SCBS-Pico Single Cell Battery Simulator

Features

- Settable Output Voltage 2.5-4.5V ±4%
- Output Current 0-200mA (0-600mA peak)
- Output Current Sense 0-200mA ±10%
- Isolated daisy-chainable UART command interface
- Powered by a simple 5V Isolated Power Supply
- SWD programming header
- USB port for power and debug COM port

Applications

- Battery Management System (BMS) testing
- Programmable micro-scale linear power supply
- Strangely shaped coaster

Principle of Operation

The SCBS-Pico utilizes a dual rail-to-rail op-amp with a custom BJT-based output stage to provide a regulated linear power supply output between 0V and V_{supply} ⁻ 0.5V, where V_{supply} is the input voltage provided to the device's 5V power input. The same op-amp is utilized for current sensing on the output via a high-side shunt resistor.

An isolated and level shifted UART interface allows serial communication with 5V voltage levels between multiple SCBS-Pico devices in a daisy-chained configuration. The UART_RX of the first device and the UART_TX of the final device should be connected to the UART master for control of the full chain. NOTE: it is recommended that the first device in the chain (containing the connection from the UART master to isolated UART_RX) have the highest V_{supply} rail, and the last device in the chain (with a level-shifted UART_TX interface) be connected to a GND that is common with the master device. Other topologies can be supported but will require additional isolation on the UART_TX of the last SBCS Pico device.

Pin Map

Pin	Pin Name	Function	
Number			
1	+5V	DC+ power input.	
2	OUT	Simulated battery	
		positive terminal.	
3	GND	DC- power input.	
		GND reference for	
		UART_TX_SIG_5V.	
		Simulated battery	
		negative terminal.	
4	UART_TX_SIG_5V	5V UART output.	
5	UART_RX_SIG_ISOL	Isolated 5V UART	
		input.	
6	UART_RX_GND_ISOL	Isolated 5V UART	
		input GND	
		reference.	

Device Form Factor

Due to time and material constraints for an initial prototype, the SCBS-Pico was constructed with a Raspberry Pi Pico 32bit microcontroller as the communication and control interface for the analog circuit.

Left: Device front side. Temporary GND wire (silver, bottom left) and CMD wire (white, bottom middle) attached for testing of analog circuit before firmware bringup. Right: Device bottom side. Note PC817 optocoupler (DIP-4 package, top) and output 2N2907 transistor (TO-92 package, left).

The SCBS-Pico's 6-pin 0.1" pin header interface and single M3 mounting hole allow it to be mounted to a motherboard for daisy chaining into an array of devices, in order to allow simulation of a multi-cell battery pack.

Left: Suggested daisy-chain configuration of SBS-PICO devices on a motherboard providing isolated power to each device and UART connections between each board and to the master. Right: Suggested daisy-chained power topology.

Electrical Characteristics

Parameter	Test Conditions	Min	Тур	Max	Units
V _{supply}		5		5.25	V
V _{out,max}	After 5 minutes of operation at 25°C, $I_{out} \leq 25mA$.	4.3	4.5		V
V _{out,min}			0		V
I _{out,max}	$V_{out} \ge 2.5V$, ambient temp 25°C.		200		mA

Output voltage percent error while tracking a 10Hz 0-4.5V square wave with a load current of 200mA on a DC electronic load. Error waveform shown in orange and yellow (bottom). Yellow waveform (CH1) is commanded output voltage, green waveform (CH2) is actual output voltage.

Current sense waveform (yellow) vs output voltage (green) into a 200hm load (physical resistor).

Communication Interface

The scbs_pico board provides a daisy chainable UART interface which can be used to communicate with one or more battery simulators. Each battery simulator ingests packets via its UART_RX port, and modifies / re-transmits the packet via its UART_TX port in order to control devices downstream. The UART interface is isolated on the UART_RX pin in order to enable the cells to be interconnected

Packet Type	Packet Format		
BSDIS	Battery Simulator Discover		
	Discovers all battery simulator devices in the chain. Master transmits a BSDIS packet with LAST_CELL_ID=0, and each device increments LAST_CELL_ID and forwards the packet down the chain. The last device replies to the master with LAST_CELL_ID=n, where n is the number of devices in the chain.		
	\$BSCDS, <last cell="" id="">*<checksum></checksum></last>		
BSMRD	Battery Simulator Multi Read		
	Reads a single register from all battery simulator devices simultaneously. Generates a single BSMRS packet reply upon success.		
	<pre>\$BSMRD,<reg_addr>*<checksum></checksum></reg_addr></pre>		
BSMWR	Battery Simulator Multi Write		
	Writes a value to a single register on all battery simulator devices simultaneously. Generates a single BSMRS packet reply upon success.		
	\$BSMWR, <reg_addr>, <value>*<checksum></checksum></value></reg_addr>		
BSSRD	Battery Simulator Single Read		
	Reads the value of a register on a single battery simulator, addressed via CELL_ID. Generates a single BSSRS packet reply upon success.		
	<pre>\$BSRRD,<cell_id>,<reg_addr>*<checksum></checksum></reg_addr></cell_id></pre>		
BSSWR	Battery Simulator Single Write		
	Writes a value to a register on a single battery simulator, addressed via CELL_ID. Generates a single BSSRS packet reply upon success.		
	<pre>\$BSRWR,<cell_id>,<reg_addr>,<value>*<checksum></checksum></value></reg_addr></cell_id></pre>		

Battery Simulator Command Packets

Battery Simulator Response Packets

Packet Type	Packet Format
BSSRS	Battery Simulator Single Response
	Response from a single battery simulator (signed with CELL_ID). Includes a value that is a response to a BSSWR or BSSRD command, or an error created by another (invalid) command.
	Value can be "OK" (no error), "ERR: <code>" with an included error code, or "<value>" where an actual value of a register is returned.</value></code>
	<pre>\$BSRSP,<cell_id>,<value>*<checksum></checksum></value></cell_id></pre>

Revision History

Revision	Date	Author	Note
0.1.0	2022-11-10	J. McNelly	Initial release.
1.0.0	2022-12-08	J. McNelly	First draft with finalized serial protocol used in initial CELLSIM prototype.