Design Challenge: Remote Load Switch

Power Requirements

Parameter	Value			Units	Note
	Min	Тур	Max		
V _{supply}	12		60	VDC	Voltage of supply to be switched.
ا _{load}			10	А	Current into load.
L _{load}			5	mH	Load inductance.
f _{switch}			1	Hz	Continuous switching frequency.

- Probably want to switch high-side with a PMOS so load is at 0V when OFF.
- Inductive load needs flywheel diode for protection. No optimizations required for fast turn-off.
- Should oversize V_{ds} and I_{ds} of switching MOSFET to be safe.
- Gate drive requirements are pretty loose (not doing high frequency switching).

Environmental Requirements

Parameter	Value			Units	Note
	Min	Тур	Мах	•	
T _{ambient}	-40		70	°C	Ambient temperature.
р _{аtm}	100		10	kPa	Atmospheric pressure.
EMI			Some		Conducted / radiated EMI.
Shock / Vibe			Moderate		Mechanical shock and vibration.

- Most industrial / commercial / automotive components meet the temperature spec.
- Don't need to qualify for vacuum, but maybe add pressure relief to enclosures?
- Add filters to power supply for reduced EMI in and out.
- Use differential signals, galvanically isolate comms to reduce ground loops.
- Need to be careful with component mass and dimensions, may need potting or celastic on big / dangly stuff, lots of PCB mounting points. Test for vibe modes.

Measurement and Communication Requirements

Parameter	Value			Units	Note
	Min	Тур	Мах	•	
d _{comms}			100	ft	Communication link distance.
e _{current}	-10		10	mA	Current measurement error.
f _{data}	100			Hz	Data sample and reporting rate.

- Long data link distance, probably need differential signals with decent transceivers. Digitize analog signals for lower noise and simpler combined interface.
- Need pretty high resolution and accuracy for current measurement. Need to pay attention to component tolerances and ADC resolution. Dynamic range is ~1:1000 (12-bit ADC only has 4096 counts, and the last few bits aren't usable).
- Data reporting rate is rather low, could probably get away with UART -> RS-485.

Additional Thoughts

- Power switch needs to be fail-safe and difficult to damage.
 - Reverse polarity protection, undervoltage protection, overcurrent protection.
 - Need overcurrent protection to be fast-acting for short-circuits but compatible with capacitive loads.
 - Unprotected failure modes should result in the switch failing open (load is OFF).
- Switch should self-recover from faults.
- Switch should be able to report fault conditions when / after they occur.
- Switch should be able to report bus voltage.

Simplified Block Diagram

Simplified Block Diagram: Power Input

Power Input

Simplified Block Diagram: Load Switch

Load Switch

Simplified Block Diagram: Current Sense

Current Sense

Simplified Block Diagram: Overcurrent Detection

Overcurrent Detection

Overcurrent Detection: PCB Layout

Simplified Block Diagram: Voltage Sense / UVLO

Voltage Sensing and Undervoltage Detection

Simplified Block Diagram: Fault Bus

Shared Fault Bus with Sustained Latch

Simplified Block Diagram: Microcontroller

Microcontroller

Simplified Block Diagram: RS-485 Transciever

Isolated RS-485 Comms Interface

Simplified Block Diagram: Power Supplies

Power Supply Protection and Filtering

Power Supplies

PCB Layout

Backup Slides

Beep beep beep

Project Github: https://github.com/CoolNamesAllTaken/high-side-switch